
INTELLIGENCE AS A SERVICE. SELF-MANAGEMENT OF SERVICES
Intelligent infrastructure design for the IoT (DII)

(Part One)

A l f o n s o G o n z á l e z B r i o n e s
Based on material created by Jorge Gómez Sanz

Introduction to the subject

 Remote Procedure Call

 Introduction SaaS and Serverless

 Introduction PaaS and IaaS

Remote Procedure Call
 REST or WS

 Makes a difference

 Hamad, H., Saad, M., & Abed, R. (2010). Performance Evaluation of
RESTful Web Services for Mobile Devices. Int. Arab J. e-Technol., 1(3), 72-
78.

Service response time (milliseconds) and message size (bytes) of the concatenation string.

Remote Procedure Call
 A Complex Decision - Decision Overview

Remote Procedure Call
 So far, they have seen web services and multi-tier architecture,

and microservices.

 RPC implies that one program calls another program on
another machine:

 asynchronous

 synchronous

 It is different from a remote socket invocation in that sockets
offer only two operations: read and write.

 RPC makes it possible to provide a remote API. Google RPC is
an implementation of this approach.

 There are others, such as Java RMI or Apache Thrift
https://thrift.apache.org/.

Remote Procedure Call
 Questions that arise...

 Do both programs have to be written in the same
language ==> polyglot

 What does the other program do when it is not invoked?

 What happens if two or more computers want to invoke
the program

Remote Procedure Call
 Google RPC

 A description of RPC elements

Remote Procedure Call
 Google RPC & IoT

 The main reason for integration is the relationship between backend and edge computing.
Efficiency

 ESP8266 Programming

 But you can't directly use gRPC on an arduino!!!!

 However, it can handle data streams:
https://www.youtube.com/watch?v=c9z_o5lu0dI

gRPC - http://grpc.io

Efficient IoT with the ESP8266, Protocol Buffers, Grafana, Go, and Kubernetes - https://medium.com/grpc/efficient-iot-with-
the-esp8266-protocol-buffers-grafana-go-and-kubernetes-a2ae214dbd29

Remote Procedure Call
 gRPC Vs WS

 SOA also offers us an API / gRPC

 WS requires a heavy infrastructure (JBoss, Tomcat) / gRPC
does not.

 WS may define the protocol / gRPC may not

 WS can globally organize how different services are
coordinated / gRPC cannot.

 WS cannot give uniform data types across the /gRPC infrastructure.

 Interesting new ideas: bidirectional streaming in gRPC

 A summary of why REST "sucks" when compared to gRPC:
https://www.youtube.com/watch?v=RoXT_Rkg8LA

Remote Procedure Call
 Benchmark REST Vs gRPC

 Workload performance:

 Normal loading: REST > gRPC => string concatenation

 Heavy load: REST < gRPC => small numbers, big numbers,
small and big sentences (??)

 Each language has a different performance:

Remote Procedure Call
 gRPC IoT

 Benchmark (Research Gate):

 shorturl.at/mIPR4

 More Works (google Scholar):

 shorturl.at/ftKP8

Remote Procedure Call
 gRPC IoT - energy consumption (client side)

 LocaL: a smartphone Samsung S5 (ARM 2.1Gz Octacore)

 Remote: a windows 7 server (Intel Core 2 Duo 2.2Ghz)

- Small vectors

Chamas, C. L., Cordeiro, D., & Eler, M. M. (2017, November). Comparing REST, SOAP, Socket and gRPC in computation
offloading of mobile applications: An energy cost analysis. In Communications (LATINCOM), 2017 IEEE 9th Latin-American
Conference on (pp. 1-6). IEEE.

Remote Procedure Call
 gRPC IoT - energy consumption (client side)

 LocaL: a smartphone Samsung S5 (ARM 2.1Gz Octacore)

 Remote: a windows 7 server (Intel Core 2 Duo 2.2Ghz)

- Large vectors

Chamas, C. L., Cordeiro, D., & Eler, M. M. (2017, November). Comparing REST, SOAP, Socket and gRPC in computation offloading of mobile
applications: An energy cost analysis. In Communications (LATINCOM), 2017 IEEE 9th Latin-American Conference on (pp. 1-6). IEEE.

Remote Procedure Call
 To experience

 Clone: https://github.com/escalope/examplegrpc

 Execute the following instructions. First example of a simple client server.

 $ mvn verify

 $ # Run the server in one terminal

 $ mvn exec:java -Dexec.mainClass=io.grpc.examples.helloworld.HelloWorldServer

 $ # In another terminal run the client

 $ mvn exec:java -Dexec.mainClass=io.grpc.examples.helloworld.HelloWorldClient

 Now a streaming client to the server:

 $ mvn verify

 $ # Run the server in one terminal

 $ mvn exec:java -Dexec.mainClass=io.grpc.examples.manualflowcontrol.ManualFlowControlServer

 $ # In another terminal run the client

 $ mvn exec:java -Dexec.mainClass=io.grpc.examples.manualflowcontrol.ManualFlowControlClient

Remote Procedure Call
 Conclusions

 Integration between the different languages is possible.

 WS/RPC/REST are not the fastest/productive ones either.

 RPC requirements vs. WS requirements vs. REST requirements

 RPC: needs a daemon (a light one) WS: needs an application server (heavy)

 REst: need a light server

